Scalable culture of human pluripotent stem cells in 3D.
نویسنده
چکیده
The promise of human pluripotent stem cell (hPSC) therapies is ever-increasing, with the rapid proliferation of reports over the past several years demonstrating homogeneous and efficient differentiation of hPSCs to clinically relevant cell types (1–3). Such discoveries have renewed the enthusiasm and motivation for the acceleration of clinical trials using hPSC-derived cells to treat nervous system injuries and ocular degeneration, as well as diabetes and cardiac diseases in the near future. On the path to clinical implementation of hPSC therapies, the need for scalable culture technologies capable of producing sufficient quantities of cells becomes of paramount importance, as the proposed therapies demonstrate efficacy in human patients. However, despite several significant advances in recent years establishing defined, xeno-free conditions for hPSC culture (4–6), numerous challenges still remain to be overcome, including advanced 3D platforms capable of efficient, facile, and robust expansion, differentiation, and retrieval of hPSCs. In PNAS, Lei and Schaffer address many of these technical challenges with their report of a unique 3D culture system for scalable and efficient hPSC expansion and differentiation that is completely defined and capable of being compatible with good manufacturing practices (7). An important trait of the synthetic polymer hydrogel system chosen by Lei and Schaffer is that it is thermoresponsive, thereby enabling simple encapsulation and rapid retrieval of hPSCs at any time by switching the temperature between 4 °C and 37 °C, based on the phase transition behavior of the poly(N-isopropylacrylamide)co-poly(ethylene glycol) (PNIPAAm-PEG) hydrogel going from a liquid to a solid gel as the temperature is increased. In addition, because the polymeric materials are synthetic, they can be combined with recombinant molecules necessary for self-renewal or differentiation to offer a completely defined system for hPSC culture. These advantages make the described technique an attractive alternative to conventional adherent culture methods that have traditionally been used by most hPSC researchers to produce the cells for basic in vitro experiments all the way up to preclinical animal studies.
منابع مشابه
Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملA Quick update from the Past to Current Status of Human Pluripotent Stem Cell-derived Hepatocyte culture systems
Pluripotent stem cells (PSCs) may be offered as an unlimited cell source for the hepatocyte generation. The generation of hepatocytes from stem cells in vitro would provide an alternative cell source for applications in drug discovery and cell transplantation. In this review, we discuss different approaches to generate pluripotent stem cell-derived hepatocytes, advantages, limitations for each ...
متن کاملDeveloping Defined and Scalable 3D Culture Systems for Culturing Human Pluripotent Stem Cells at High Densities.
Human pluripotent stem cells (hPSCs) - including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) - are very promising candidates for cell therapies, tissue engineering, high throughput pharmacology screens, and toxicity testing. These applications require large numbers of high quality cells; however, scalable production of human pluripotent stem cells and their derivati...
متن کاملP-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells
Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...
متن کاملSpecification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells
Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...
متن کاملA fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation.
Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 52 شماره
صفحات -
تاریخ انتشار 2013